Abstract

The dynamics of birth-death processes with extinction points that are unstable in the deterministic average description has been extensively studied, mainly in the context of the stochastic transition from the mean-field attracting fixed point to the absorbing state. Here we study the opposite case of a small perturbation from the zero-population absorbing state. We show that such perturbations can grow beyond the mean-field attracting fixed point and then can collapse back into the absorbing state. Such dynamics can represent, for example, the fast growth of a pathogen and then its destruction by the immune system. We show that when the prey perturbation extinction probability is high, the loss of synchronization between the prey densities in different regions in space leads to two possible dynamic regimes: (a) a directed percolation regime based on the balance between regions escaping the absorbing state and regions absorbed into it, and (b) wave trains representing the transition of the entire space to the mean-field stable positive fixed point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.