Abstract

AbstractNatural selection shapes the evolution of antipredator traits in prey. However, selection in the wild depends on ecological context, including features of predator and prey populations, making field studies of selection critical to understanding how predators shape selection on prey defences. Threespine stickleback (Gasterosteus aculeatus) is a classic system to study the effects of predators on the natural selection of prey. In lakes and rivers, fish predators have been shown to impose selection against low plated adult stickleback phenotypes and genotypes. We directly measured selection by predatory salmonids on theEctodysplasin‐A(Eda) gene in estuary stickleback from California. Despite previous studies showing a positive correlation between predator presence and frequency of theEda“complete” allele in estuary populations, we found thatEda“low” genotypes were not significantly more frequent in salmonid predator diets. Further, we found no evidence of changes inEdagenotype frequencies across generations that would suggest directional selection driven by predators. Prior selection studies have examined the effects of large resident trout on adult stickleback. In contrast, predators in this study were juvenile anadromous salmonids, which only ate juvenile stickleback whose plate phenotypes had not fully developed. Thus, in this case, predator life history and stickleback ontogeny may preclude strong selection on stickleback armour. Our results underscore the importance of selection studies in the wild for understanding the context‐dependent nature of selection in natural populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call