Abstract

Ligandcentric virtual screening techniques employ in most cases three-dimensional Gaussians in order to define a molecule's entire pharmacophoric properties (ideally of a co-crystallised ligand) [1] and have been applied successfully in many prospective and retrospective drug discovery campaign [2]. Here, the development of a new pharmacophoric binding site descriptor in the spirit of Cavbase [3] is presented: Instead of focussing on ligand features, crucial amino-acid residues within the binding site are identified and represented as a pharmacophore model. Our method aims to combine the advantages of Cavbase with the smooth nature of a Gaussian pharmacophore representation, thus enabling binding site comparisons independently of sequence homology. Gaussian models are fast to compute and show the advantage that only very few parameters have to be defined. In contrast to a recently published approach where the entire binding site is defined by a Gaussian model for structure-based cross-reactivity predictions [4], PREDator employs only a few characteristic cavity-flanking amino acids [5] which are finally encoded in order to accelerate computations. It is shown that these models, as a conceptual representation of the binding site, can be used successfully for cross-reactivity predictions. Compared to a ligandcentric approach [5] with regard to this purpose, a structure-based approach is advantageous in terms of being less dependent on the ligand-scaffold.

Highlights

  • Ligandcentric virtual screening techniques employ in most cases three-dimensional Gaussians in order to define a molecule’s entire pharmacophoric properties [1] and have been applied successfully in many prospective and retrospective drug discovery campaign [2]

  • Our method aims to combine the advantages of Cavbase with the smooth nature of a Gaussian pharmacophore representation, enabling binding site comparisons independently of sequence homology

  • In contrast to a recently published approach where the entire binding site is defined by a Gaussian model for structure-based cross-reactivity predictions [4], PREDator employs only a few characteristic cavity-flanking amino acids [5] which are encoded in order to accelerate computations

Read more

Summary

Introduction

Ligandcentric virtual screening techniques employ in most cases three-dimensional Gaussians in order to define a molecule’s entire pharmacophoric properties (ideally of a co-crystallised ligand) [1] and have been applied successfully in many prospective and retrospective drug discovery campaign [2]. The development of a new pharmacophoric binding site descriptor in the spirit of Cavbase [3] is presented: Instead of focussing on ligand features, crucial amino-acid residues within the binding site are identified and represented as a pharmacophore model.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.