Abstract

The abundance of ungulate populations may fluctuate in response to several limiting factors, including climate, diseases, and predation. In the northern Richardson Mountains, Canada, Dall sheep (Ovis dalli dalli) have undergone a major decline in the past decades and predation by grizzly bears (Ursus arctos) and wolves (Canis lupus) was suspected as a leading cause. To better understand the relationship between these three species located in this rugged and remote ecosystem, we relied on a combination of indirect methods. We investigated the apparent role of predation on the Dall sheep population using spatial ecology and stable isotopes. We examined seasonal variation in predation risk, focusing on how it may affect Dall sheep habitat use and sexual segregation, and we evaluated the proportion of Dall sheep in the diet of both predators using stable isotopes. The movements of the three species were monitored by satellite telemetry. Dall sheep habitat use patterns were analyzed using topographical features, greenness index, land cover, and apparent predation risk. The diets of grizzly bears and wolves were examined using a Bayesian mixing model for carbon and nitrogen stable isotopes. We found that Dall sheep habitat use varied seasonally, with different patterns for ewes and rams. Exposure to grizzly bear risk was higher for rams during summer, while ewes were further exposed to wolf apparent predation risk during winter. The importance of safe habitats for ewes was reflected in space use patterns. Stable isotopes analyses suggested that the diet of grizzly bears was largely from animal sources, with mountain mammals comprising about one quarter. Wolves mostly fed on both aquatic browsers and mountain mammals. Diet variation between individual predators suggested that some individuals specialized on mountain mammals, likely including Dall sheep. We conclude that grizzly bear and wolf apparent predation risk are important in driving Dall sheep habitat use and play a role in sexual segregation. Overall, this study presents an innovative combination of indirect methods that could be applied elsewhere to better understand predator-prey dynamics in remote ecosystems.

Highlights

  • Determining the effects of predators on a prey population is an enduring ecological challenge, especially for wide-ranging species in secluded areas

  • We examined the risk posed by grizzly bears (Ursus arctos) and wolves (Canis lupus) on a remote Dall sheep (Ovis dalli dalli) population in the northern Richardson Mountains, Northwest Territories and Yukon Territory, Canada

  • Fish and small rodents were the least used for both species (Table 3). Sexual segregation in this Dall sheep population was evident in the different seasonal habitat use patterns of rams and ewes

Read more

Summary

Introduction

Determining the effects of predators on a prey population is an enduring ecological challenge, especially for wide-ranging species in secluded areas. We examined the risk posed by grizzly bears (Ursus arctos) and wolves (Canis lupus) on a remote Dall sheep (Ovis dalli dalli) population in the northern Richardson Mountains, Northwest Territories and Yukon Territory, Canada. This population is located at the northeastern limit of the species range and had been declining for fifteen years. We expected ewes to use habitats of lower apparent predation risk than rams, perinatal, despite potentially lower forage quality. By integrating spatial ecology with isotopic diet analysis, we provide insights into predator-prey relationships in this remote ecosystem

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.