Abstract
As mankind evaluates moving toward permanently inhabiting outer space and other planetary bodies, alternatives to antibiotic that can effectively control drug-resistant pathogens are needed. The activity of one such alternative, Bdellovibrio bacteriovorus HD100, was explored here, and was found to be as active or better in simulated microgravity (SMG) conditions as in flask and normal gravity (NG) cultures, with the prey viabilities decreasing by 3- to 7-log CFU/mL in 24 h. The activity of B. bacteriovorus HD100 under SMG was also appraised with three different carbapenem- and colistin-resistant pathogenic bacterial strains. In addition to being more efficient at killing two of these pathogens under SMG conditions (with losses of 5- to 6-log CFU/mL), we also explored the ability of B. bacteriovorus HD100 to hydrolyze the carbapenem- and colistin-resistant gene pools, i.e., mcr-1, blaKPC-2 and blaOXA-51, present in these clinical isolates. We found removal efficiencies of 97.4 ± 0.9 %, 97.8 ± 0.4 % and 99.3 ± 0.1 %, respectively, in SMG cultures, while similar reductions were also seen in the flask and NG cultures. These results illustrate the potential applicability of B. bacteriovorus HD100 as an antibiotic to combat the ever-growing threat of multidrug-resistant (MDR) pathogens during spaceflight, such as in the International Space Station (ISS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Microbiological Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.