Abstract

BackgroundThe current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations.MethodsPredators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts.ResultsExperiments found that habitat type (P < 0.0001) and predator species (P < 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P < 0.0001) and habitat type (P < 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles.ConclusionThese experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

Highlights

  • The current status of insecticide resistance in mosquitoes and the effects of insecticides on nontarget insect species have raised the need for alternative control methods for malaria vectors

  • The present study aimed to evaluate the predation rate and efficacy of five main mosquito larvae predators found in natural habitats against An. gambiae larvae in different habitat types in highlands of western Kenya

  • The PCR reaction was carried out with an initial step of 10 min at 94°C followed by 30 cycles, each consisting of 5 min denaturation at 94°C, 30 s annealing at 50°C and 30 s extension at 72°C; the final cycle products were extended for 10 min at 72°C

Read more

Summary

Introduction

The current status of insecticide resistance in mosquitoes and the effects of insecticides on nontarget insect species have raised the need for alternative control methods for malaria vectors. Blaustein and Chase [7] found that predator and larvae associations are likely to reduce the mosquito populations and could be an effective management tool for their control Predators such as notonectids [11], belostomatids [11], dytiscid beetles [8,11], crustaceans [12], copepods [13], Odonata [14,15], wolf spiders (Araneae: Lycosidae) [16] and amphibians [11] have been shown to be potential biological control agents against mosquito species in various habitats such as agricultural drainages, rice fields and small water bodies. Predator-larvae interactions have been found to be one of the most important factors in the mortality of mosquito larvae in natural habitats [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.