Abstract

Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 106 and 3.3 × 104 oocysts L−1) and Giardia (4.8 × 104 cysts L−1) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10−4 infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.