Abstract

We have investigated submillisecond delayed luminescence in spinach chloroplasts under a variety of conditions. In Tris-washed chloroplasts, which are inhibited on the oxidizing side of P-680, the delayed light emission in the 7–200 μs time-range decayed with biphasic behavior. In fully dark-adapted samples illuminated by a single saturating laser pulse, the fast phase of delayed luminescence followed a nearly identical pH-dependent time-course as that observed optically and by ESR for P +-680 reduction, thus verifying the recombination hypothesis for the origin of delayed light. The observed slower phase of delayed luminescence was also pH dependent, but unlike the fast phase, could not be ascribed to specific electron transfer events of PS II. This phase could be rationalized by a heterogeneity in the population of P-680. While kinetic parameters were found to be insensitive to changes in ionic strength, the overall luminescence intensity was quite sensitive to the electrical parameters, thus indicating the role of ionic strength and local charges in delayed luminescence modulation. A similar series of experiments was performed on untreated chloroplasts. The pH-dependent delayed luminescence behavior in both untreated chloroplasts and Tris-washed chloroplasts was similar despite significantly faster kinetics associated with the reduction of P +-680 by the secondary PS II electron donor, Z, in the former preparation (e.g., Van Best, J.A. and Mathis, P. (1978) Biochim. Biophys. Acta 503, 178–188). Thus, it was concluded that, in untreated samples, microsecond delayed luminescence emanates primarily from centers which are not competent in oxygen evolution. The nearly identical delayed luminescence intensity in untreated chloroplasts and in Tris-washed chloroplasts was rationalized by a model which predicts modulations in delayed luminescence yield by the exciton-quenching effect of P +-680. Computer simulations demonstrate the feasibility of this model. The previously documented flash oscillations in microsecond delayed luminescence intensity in untreated chloroplasts (Bowes, J.M. and Crofts, A.R. (1979) Biochim. Biophys. Acta 547, 336–346), which we readily observed, were attributed to alterations in delayed luminescence yield (in nonfunctional centers) by variations in charge density stored at the oxygen-evolving complex of functional centers. Taken together, our results emphasize the dependence of delayed luminescence kinetics upon electron-transfer kinetics and the dependence of delayed luminescence amplitude upon the photochemical parameters, the exciton yield and the emission yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.