Abstract

We study a sample of gamma-ray bursts detected by the Swift satellite with known redshift which show a in the Swift BAT light curve. We analyze the spectra of the precursors and compare them with the time-integrated spectra of the prompt emission. We find neither a correlation between the two slopes nor a tendency for the precursors spectra to be systematically harder or softer than the prompt ones. The energetics of the precursors are large: on average, they are just a factor of a few less energetic (in the source rest-frame energy range 15-150 keV) than the entire bursts. These properties do not depend on the quiescent time between the end of the and the start of the main event. These results suggest that what has been called a precursor is not a phenomenon distinct from the main event, but is tightly connected with it, even if, in some case, the quiescent time intervals can be longer than 100 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.