Abstract

In solutions of low conductivity and at high frequencies the impedance of a SECM tip-auxiliary electrode cell is dominated by the solution resistance between the tip and counter electrode. Alternating current scanning electrochemical microscopy (AC-SECM) utilises the effect of an increasing (decreasing) solution resistance as the SECM tip approaches an insulator (conductor) for mapping domains of different conductivity/electrochemical activity on surfaces immersed into electrolytes. In the present study, we employed AC-SECM in aqueous solutions to evaluate the integrity of the solid/liquid interface of lacquered tinplates as commonly used in industry to manufacture, i.e. food cans. Significant differences were determined between the AC response and the phase shift measured with the SECM tip above the intact coating and above defects where the surface of the steel base is exposed. This allowed with high lateral resolution to detect and to visualise artificial micro cavities which we consider as an experimental model of microscopically small precursor sites for localised corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.