Abstract
Rapid and efficient removal of environmental antibiotics is vital to curb bacterial resistance. Through rational precursors-oriented design, we attain the best Al2O3 absorbent by 500 °C calcination of ammonium aluminium carbonate hydroxide (AACH) precursor from NH4HCO3 route (AACH-NH4HCO3-500) for fast and efficient removal of tetracycline (TC) and other antibiotics from environmental waters including high-salinity wastewater. AACH-NH4HCO3-500 (0.25 g·L−1) can remove (69.92 ± 1.78)% of aqueous TC (0.025 g·L−1) within 5 min and (97.62 ± 2.75)% within 2 h, and the adsorption capacity is 444.4 mg·g−1, which is the highest qmax of TC for the 2 h-adsorptions among numerous adsorbents. AACH-NH4HCO3-500 has fine tolerance to the coexisting substances, and can be easily regenerated and reused, and has no harm even discarded. The relations among the synthetic methods, the structural features, and the adsorption functions of Al2O3 are disclosed through a systematic comparison of the commercial Al2O3 and different Al2O3 nanomaterials attained from three precursors produced by five different routes. The reasons behind the exceptional adsorption performance are discussed throughout. Our findings would facilitate the development of excellent adsorbents for removal of other pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.