Abstract

We report on the observation of precursor effects of the rhombohedral-to-cubic phase transition in Indium Selenide (InSe) with several experimental techniques. The pressure at which these precursor defects are first observed depends on the sensitivity of the experimental technique. In transport measurements, which are very sensitive to low defect concentrations, precursor effects are observed 5 to 6 GPa below the phase transition pressure whereas in X-ray diffraction measurements precursor effects are only observed 2 GPa below the phase transition pressure. We report optical absorption measurements, in which the precursor effects are shown by the growth and propagation of dark linear defects appearing 3 GPa below the phase transition pressure. On the base of a simple model of the stress field around edge dislocations, we attribute the darkening of the InSe samples to local phase transitions to a high-pressure modification along linear dislocations. These results agree with room-pressure and high-pressure Raman spectra of samples compressed up to 7-8 GPa, which show new phonon lines not corresponding to the low-pressure phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call