Abstract

We investigate the early stages of cesium lead bromide perovskite formation through absorption spectroscopy of stopped-flow reactions, high-throughput mapping, and direct synthesis and titration of potential precursor species. Calorimetric and spectroscopic measurements of lead bromide complex titrations combined with theoretical calculations suggest that bromide complexes with higher coordination numbers than previously considered for nonpolar systems can better explain observed behaviors. Synthesis mapping of binary lead halides reveals multiple lead bromide species with absorption peaks higher than 300 nm, including a previously observed species with a peak at 313 nm and two species with peaks at 345 and 370 nm that also appear as reaction intermediates during the formation of lead bromide perovskites. Based on theoretical calculations of excitonic energies that match within 50 meV, we give a preliminary assignment of these species as two-dimensional magic-sized clusters with side lengths of 2, 3, and 4 unit cells. Kinetic measurements of the conversion of benzoyl bromide precursor are connected to stopped-flow measurements of product formation and demonstrate that the formation of complexes and magic-sized clusters (i.e., nucleation) is controlled by precursor decomposition, whereas the growth rate of 2D and 3D perovskites is significantly slower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.