Abstract

BackgroundAnopheles albimanus is a malaria vector in Central America, northern South America and the Caribbean. Although a public health threat, An. albimanus precopulatory mating behaviors are unknown. Acoustics play important roles in mosquito communication, where flight tones allow males to detect and attract potential mates. The importance of sound in precopulatory interactions has been demonstrated in Toxorhynchites brevipalpis, Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae; convergence in a shared harmonic of the wing beat frequency (WBF) during courtship is thought to increase the chance of copulation. To our knowledge, An. albimanus precopulatory acoustic behaviors have not been described to date. Here, we characterized An. albimanus (i) male and female flight tones; (ii) male–female precopulatory acoustic interactions under tethered and free flight conditions; and (iii) male-male acoustic interactions during free flight.ResultsWe found significant increases in the WBFs of both sexes in free flight compared to when tethered. We observed harmonic convergence between 79% of tethered couples. In free flight, we identified a female-specific behavior that predicts mate rejection during male mating attempts: females increase their WBFs significantly faster during mate rejection compared to a successful copulation. This behavior consistently occurred during mate rejection regardless of prior mating attempts (from the same or differing male). During group flight, males of An. albimanus displayed two distinct flying behaviors: random flight and a swarm-like, patterned flight, each associated with distinct acoustic characteristics. In the transition from random to patterned flight, males converged their WBFs and significantly decreased flight area, male-male proximity and the periodicity of their trajectories.ConclusionsWe show that tethering of An. albimanus results in major acoustic differences compared to free flight. We identify a female-specific behavior that predicts mate rejection during male mating attempts in this species and show that male groups in free flight display distinct flying patterns with unique audio and visual characteristics. This study shows that An. albimanus display acoustic features identified in other mosquito species, further suggesting that acoustic interactions provide worthwhile targets for mosquito intervention strategies. Our results provide compelling evidence for swarming in this species and suggests that acoustic signaling is important for this behavior.

Highlights

  • Anopheles albimanus is a malaria vector in Central America, northern South America and the Carib‐ bean

  • Because various studies of insect flight have reported that wing beat frequency (WBF) of tethered individuals differ compared to individuals in free flight [4, 25, 44, 45], we sought to determine how An. albimanus acoustics might differ in this regard by examining mosquitoes in flight

  • To compare mating attempts that ended in a successful copulation or a rejection, we examined audio recordings of the 12 interactions that resulted in a successful copulation and randomly selected one mating attempt from each of the 21 females that did not mate in order to identify male- or female-specific acoustic behaviors that occur immediately prior to An. albimanus copulation or mate rejection

Read more

Summary

Introduction

Anopheles albimanus is a malaria vector in Central America, northern South America and the Carib‐ bean. A public health threat, An. albimanus precopulatory mating behaviors are unknown. Despite the implementation of various control methods, which include indoor and outdoor insecticide spraying and the use of insecticide impregnated bednets, malaria continues to be a major public health issue in Colombia [5, 6]. Anopheles albimanus (subgenus Nyssorhynchus) is a vector of malaria throughout Central America, the northern portion of South America and the Caribbean [7]. Despite its status as an important vector in the Americas, there exists a large gap in our knowledge of the behavior, ecology and biology of this species, making the development and/or improvement of control methods difficult. Much of our understanding of anopheline reproduction is inferred from studies in An. gambiae (subgenus Cellia), whose post-mating reproductive biology differs substantially from An. albimanus [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call