Abstract
ABSTRACT This study compared the effects of precooling via whole-body immersion in 25°C CO2-enriched water (CO2WI), 25°C unenriched water (WI) or no cooling (CON) on 10-km cycling time trial (TT) performance. After 30 min of precooling (CO2WI, CON, WI) in a randomized, crossover manner, 11 male cyclists/triathletes completed 30-min submaximal cycling (65%VO2peak), followed by 10-km TT in the heat (35°C, 65% relative humidity). Average power output and performance time during TT were similar between conditions (p = 0.387 to 0.833). Decreases in core temperature (Tcore) were greater in CO2WI (−0.54 ± 0.25°C) than in CON (−0.32 ± 0.09°C) and WI (−0.29 ± 0.20°C, p = 0.011 to 0.022). Lower Tcore in CO2WI versus CON was observed at 15th min of exercise (p = 0.050). Skin temperature was lower in CO2WI and WI than in CON during the exercise (p < 0.001 to 0.031). Only CO2WI (1029 ± 305 mL) decreased whole-body sweat loss compared with CON (1304 ± 246 mL, p = 0.029). Muscle oxygenation by near-infrared spectroscopy (NIRS), thermal sensation, and thermal comfort were lower in CO2WI and WI versus CON only during precooling (p < 0.001 to 0.041). NIRS-derived blood volume was significantly lower in CO2WI and WI versus CON during exercise (p < 0.001 to 0.022). Heart rate (p = 0.998) and rating of perceived exertion (p = 0.924) did not differ between conditions throughout the experiment. These results suggested that CO2WI maybe more effective than WI for enhanced core body cooling and minimized sweat losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.