Abstract

We discuss preconditioning and overlapping of waveform relaxation methods for sparse linear differential systems. It is demonstrated that these techniques significantly improve the speed of convergence of the waveform relaxation iterations resulting from application of various modes of block Gauss-Jacobi and block Gauss-Seidel methods to differential systems. Numerical results are presented for linear systems resulting from semi-discretization of the heat equation in one and two space variables. It turns out that overlapping is very effective for the system corresponding to the one-dimensional heat equation and preconditioning is very effective for the system corresponding to the two-dimensional case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.