Abstract

The abnormal accumulation of protein aggregates is a dominant pathological feature common in neurodegenerative diseases. Autophagy contributes to the processing of aggregated proteins resistant to proteasomal degradation. Autophagic degradation is multi-step process, and especially aggresome formation is a specific and active cellular process for appropriate autophagy-mediated protein homeostasis mechanism. Here, we showed that preconditioning of cells with a non-toxic low dose of MG132 induced autophagy, using an in vitro experimental model that closely represents the characteristics of the autophagy pathway under proteasome inhibition. Clear and large aggresome-like protein accumulation was observed in the perinuclear region of differentiated SH-SY5Y cells with preconditioning stimulus. This results in up-regulation of autophagosome formation and turnover and degradation of intracellular ubiquitinated and p62-bound protein aggregates. Pretreatment with low dose of MG132 attenuated proteinopathy-related cytotoxicity. Together, our experimental model could provide a proper in vitro system for studying the autophagy-related pathophysiology of neurodegeneration, especially therapeutic targeting of intracellular aggresome-like aggregates formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.