Abstract
PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including nonsmooth L1 sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L1-terms as well as additional inclusion of box control constraints require the use of semismooth Newton methods. We propose robust preconditioners for different formulations of the Newton equation. With the inclusion of a line-search strategy and an inexact approach for the solution of the linear systems, the resulting semismooth Newton’s method is reliable for practical problems. Our results are underpinned by a theoretical analysis of the preconditioned matrix. Numerical experiments illustrate the robustness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.