Abstract

In this paper, we consider the numerical solution of the poroelasticity problem with stochastic properties. We present a Two-stage Markov Chain Monte Carlo method for geomechanical subsidence. In this work, we study two techniques of preconditioning: (MS) multiscale method for model order reduction and (ML) machine learning technique. The purpose of preconditioning is the fast sampling, where a new proposal is first tested by a cheap multiscale solver or using fast prediction of the neural network and the full fine grid computations will be conducted only if the proposal passes the first step. To construct a reduced order model, we use the Generalized Multiscale Finite Element Method and present construction of the multiscale basis functions for pressure and displacements in stochastic fields. In order to construct a machine learning based preconditioning, we generate a dataset using a multiscale solver and use it to train neural networks. The Karhunen–Loéve expansion is used to represent the realization of the stochastic field. Numerical results are presented for two- and three-dimensional model examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.