Abstract

AbstractOrbital-free density functional theory (OFDFT) is a quantum mechanical method in which the energy of a material depends only on the electron density and ionic positions. We examine some popular algorithms for optimizing the electron density distribution in OFDFT, explaining their suitability, benchmarking their performance, and suggesting some improvements. We start by describing the constrained optimization problem that encompasses electron density optimization. Next, we discuss the line search (including Wolfe conditions) and the nonlinear conjugate gradient and truncated Newton algorithms, as implemented in our open source OFDFT code. We finally focus on preconditioners derived from OFDFT energy functionals. Newly-derived preconditioners are successful for simulation cells of all sizes without regions of low electron-density and for small simulation cells with such regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.