Abstract
We present the analysis and design of a new type of photonic crystal (PC) demultiplexers (i.e., preconditioned demultiplexer), in which the simultaneous existence of the superprism effect and the negative effective index for diffraction results in a compact structure by canceling the second-order spectral phase to avoid beam broadening inside the PC. This approach considerably relaxes the requirements for the large area of the structure and the small divergence of the input beam. As a result, the size of the preconditioned demultiplexers varies as N(2.5) (N being the number of wavelength channels) compared to the N(4) variation in the conventional superprism-based PC demultiplexers. We use a generalized effective index model to analyze, design, and optimize these demultiplexing structures. This approximate model can be used to extract all the basic properties of the PC device simply from the band structure and eliminates the need to go through tedious simulations especially for three-dimensional structures. Our results show that the preconditioned superprism-based PC demultiplexers have 2 orders of magnitude smaller size compared to the conventional ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.