Abstract

The new scheme of the rapid preconcentration of volatile organic substances followed by the thermodesorption and gas chromatographic determination by using a flame ionization detector is proposed for the analysis of air. The scheme implies a change in the geometry of the adsorbent layer in a column during the transition from adsorption to thermal desorption steps. The extraction of analytes is carried out in a wide tube, allowing quantitative adsorption at higher flow rates of the analyzed air passed through the magnetic sorbent held in a thin layer retained by a permanent magnet without any supporting frits. Novel magnetic adsorbents composed of magnetite or a zirconia/magnetite core and pyrocarbon shell are developed for this application. At the end of the adsorption step, the magnet moved out of the system, and the adsorbent transferred under the gravity force into a narrow tube, which provides the more efficient heating of the adsorbent and minimal blurring of the analyte zones during the subsequent thermal desorption. The proposed scheme allows a significant reduction (approximately 10 times) of the time required for the preconcentration of analytes, which is illustrated by the GC determination of alcohols (butanol-1, pentanol-1), phenol, and o-cresol in the air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call