Abstract

Infliximab (INF) is a chimeric monoclonal immunoglobulin acting against tumor necrosis factor-alpha (TNF-α). The drug is used for the treatment of chronic autoimmune and inflammatory diseases. A target-specific nanomaterial is presented for the extraction of INF from human plasma along with a label-free surface enhanced Raman spectroscopy (SERS) method for its determination using a handheld device. A gold-coated copper oxide chip was functionalized with TNF-α and used to extract the drug from plasma. INF was recovered from the extractor by lowering the pH value to 2.5. The disulfide bond structure of the drug was then reduced and used for its oriented chemisorption onto a gold-coated copper oxide substrate for SERS measurements using the INF-specific band at 936cm-1. The working range of the SERS method was between 10-7 and 10-14M of reduced INF. The relative standard deviation (RSD), between three different measurements was 4.2% (intra-day) and 7.1% (inter-day). The quantification and detection limits of the assay (LOQ, LOD) were 0.01 pM and 1.4 fM respectively. The SERS detection was cross-validated against ELISA where 99% agreement was found between the two methods. Graphical abstractSchematic representation of the determination of Infliximab (INF) in blood. A gold coated copper oxide chip was functionalised with tumor necrosis factor (TNF-α) and used to extract INF from blood plasma. The captured INF was released, reduced, chemisorbed onto a second gold-coated copper oxide substrate and screened by surface-enhanced Raman spectroscopy (SERS) using a handheld device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.