Abstract
Magnetically N-doped Carbon quantum dots has been synthesized via a simple chemical method and applied as a sorbent for the preconcentration and extraction of trace amounts of Pb2+ from water and vegetable samples followed by flame atomic absorption spectrometric detection. The nanoparticles were characterized by X-ray diffraction, UV–vis spectra, Fourier transform infrared spectroscopy, vibrating sample magnetometer analysis and transmission electron microscopy. A central-composite design was used to find the optimum conditions for the preconcentration procedure through response surface methodology. The effects of various parameters such as the pH value, adsorption time, amount of adsorbent, desorption conditions (type, concentration and volume of the eluent and desorption time), sample volume and interfering ions have been studied. Under the optimized conditions, the calibration graph was linear in the range of 0.3–300μgL−1 (R2=9992). The detection limit and pre-concentration factor were found to be 0.082μgL−1 and 265, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.