Abstract

Microelectromechanical systems (MEMS) electrostatic-based transducers inherently produce harmonics as the electrostatic force generated in the transmit mode is approximately proportional to the square of the applied voltage signal. This characteristic precludes them from being effectively used for harmonic imaging (either with or without the addition of microbubble-based contrast agents). The harmonic signal that is nonlinearly generated by tissue (or contrast agent) cannot be distinguished from the inherent transmitted harmonic signal. We investigated two precompensation methods to cancel this inherent harmonic generation in electrostatic transducers. A combination of finite element analysis (FEA) and experimental results are presented. The first approach relies on a calculation, or measurement, of the transducer's linear transfer function, which is valid for small signal levels. Using this transfer function and a measurement of the undesired harmonic signal, a predistorted transmit signal was calculated to cancel the harmonic inherently generated by the transducer. Due to the lack of perfect linearity, the approach does hot work completely in a single iteration. However, with subsequent iterations, the problem becomes more linear and converges toward a very satisfactory result (a 18.6 dB harmonic reduction was achieved in FEA simulations and a 20.7 dB reduction was measured in a prototype experiment). The second approach tested involves defining a desired function [including a direct current (DC) offset], then taking the square root of this function to determine the shape of the required input function. A 5.5 dB reduction of transmitted harmonic was obtained in both FEA simulation and experimental prototypes test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.