Abstract

Glioblastoma (GBM) is an ideal candidate disease for signal transduction targeted therapy because the majority of these tumors harbor genetic alterations that result in aberrant activation of growth factor signaling pathways. Loss of heterozygosity of chromosome 10, mutations in the tumor suppressor gene PTEN, and PI3K mutations are molecular hallmarks of GBM and indicate poor prognostic outcomes in many cancers. Consequently, inhibiting the PI3K pathway may provide therapeutic benefit in these cancers. PI3K inhibitors generally block proliferation rather than induce apoptosis. To restore the sensitivity of GBM to apoptosis induction, targeted agents have been combined with conventional therapy. However, the molecular heterogeneity and infiltrative nature of GBM make it resistant to traditional single agent therapy. Our objectives were to test a dual PI3K/mTOR inhibitor that may cross the blood–brain barrier (BBB) and provide the rationale for using this inhibitor in combination regimens to chemotherapy-induced synergism in GBM. Here we report the preclinical potential of a novel, orally bioavailable PI3K/mTOR dual inhibitor, DS7423 (hereafter DS), in in-vitro and in-vivo studies. DS was tested in mice, and DS plasma and brain concentrations were determined. DS crossed the BBB and led to potent suppression of PI3K pathway biomarkers in the brain. The physiologically relevant concentration of DS was tested in 9 glioma cell lines and 22 glioma-initiating cell (GIC) lines. DS inhibited the growth of glioma tumor cell lines and GICs at mean 50% inhibitory concentration values of less than 250 nmol/L. We found that PI3K mutations and PTEN alterations were associated with cellular response to DS treatment; with preferential inhibition of cell growth in PI3KCA-mutant and PTEN altered cell lines. DS showed efficacy and survival benefit in the U87 and GSC11 orthotopic models of GBM. Furthermore, administration of DS enhanced the antitumor efficacy of temozolomide against GBM in U87 glioma models, which shows that PI3K/mTOR inhibitors may enhance alkylating agent-mediated cytotoxicity, providing a novel regimen for the treatment of GBM. Our present findings establish that DS can specifically be used in patients who have PI3K pathway activation and/or loss of PTEN function. Further studies are warranted to determine the potential of DS for glioma treatment.

Highlights

  • phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a frequently dysregulated pathway in cancer and is activated by various mechanisms in GBM [1,2,3,4,5]. mTOR and class I PI3K are two major and interdependent oncogenic kinases that contribute to cancer biology through the synthesis of cellular components and the regulation of growth, proliferation, migration, survival, and angiogenesis

  • Further characterization of DS showed that it poorly inhibited a representative panel of 227 kinases in biochemical assays since greater than 50% inhibition was seen only against 2 other kinases: mixed lineage kinase 1 (MLK1) and never-inmitosis gene a (NIMA)-related kinase 2 (NEK2)

  • In an effort to understand the molecular predictors of response to DS, we determined whether key alterations in the PI3K pathway, such as PIK3CA/PIK3R1 mutations, or PTEN alterations were associated with greater sensitivity to DS.We found that cell lines harboring oncogenic mutations in PIK3CA/PIK3R1 and PTEN alterations were significantly more sensitive than cell lines without these alterations

Read more

Summary

Introduction

PI3K/Akt/mTOR is a frequently dysregulated pathway in cancer and is activated by various mechanisms in GBM [1,2,3,4,5]. mTOR and class I PI3K are two major and interdependent oncogenic kinases that contribute to cancer biology through the synthesis of cellular components and the regulation of growth, proliferation, migration, survival, and angiogenesis. BKM-120 (Buparlisib) a dimorpholino pyrimidine derivative is an oral pan-class I PI3K inhibitor that penetrates the blood-brain barrier (BBB) [6] It is in clinical trials for solid tumors including GBM, and has anti-proliferative and pro-apoptotic effects in GBM cell lines independent of PTEN or EGFR status. PKI587 and PKI-402 were shown to have a strong in vitro antitumorigenic effect across multiple cell types including glioma cells, while slowing tumor growth in xenograft models [5, 14] Another dual PI3K/mTOR inhibitor, PI-103, which is known to have monotherapy efficacy in glioma [5] was recently shown to reduce tumor volumes in combination with NSC-delivered s-trail in an orthotopic intracranial xenograft model [15]. AKT activation contributes to resistance to chemotherapy in various cancer types, and inhibitors of the PI3K/Akt pathway have been used as single agents and in combination with chemotherapy to overcome chemotherapeutic resistance

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call