Abstract

Background HIV-1 is still a major public health problem and one of the priorities of the World Health Organization. The development of HAART against HIV was a considerable advance for infected individuals, but this life-long treatment does only block virus replication, and no viral eradication is obtained. Furthermore, HAART may exhibit long-term toxicity and may eventually lead to the emergence of drug-resistant viral variants. We explore a new durable therapeutic intervention based on a gene therapy that induces RNA interference (RNAi) against HIV1. In this pre-clinical research setting, “humanized” experimental mouse models are of interest considering the relative ease of handling and relatively low cost as compared to non-human primates. Methods

Highlights

  • HIV-1 is still a major public health problem and one of the priorities of the World Health Organization

  • We explore a new durable therapeutic intervention based on a gene therapy that induces RNA interference (RNAi) against HIV1

  • We have developed an RNAi gene therapy based on the transduction of human hematopoietic progenitor cells (HPC) with lentiviral vectors encoding short-hairpin RNAs to induce silencing of HIV genes

Read more

Summary

Background

HIV-1 is still a major public health problem and one of the priorities of the World Health Organization. The development of HAART against HIV was a considerable advance for infected individuals, but this life-long treatment does only block virus replication, and no viral eradication is obtained. HAART may exhibit long-term toxicity and may eventually lead to the emergence of drug-resistant viral variants. We explore a new durable therapeutic intervention based on a gene therapy that induces RNA interference (RNAi) against HIV1. In this pre-clinical research setting, “humanized” experimental mouse models are of interest considering the relative ease of handling and relatively low cost as compared to non-human primates

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.