Abstract

To assess the value of glutamate chemical exchange saturation transfer (GluCEST) after whole-brain radiotherapy (WBRT) as an imaging marker of radiation-induced brain injury (RBI) and to preliminarily show the feasibility of multiparametric MRI-guided organ at risk (OAR) avoidance. Rats were divided into two groups: the control (CTRL) group (n = 9) and the RBI group (n = 9). The rats in the RBI group were irradiated with an X‑ray radiator and then subjected to awater maze experiment 4weeks later. In combination with high-performance liquid chromatography (HPLC), we evaluated the value of GluCEST applied to glutamate changes for RBI and investigated the effect of such changes on glutamatergic neuronal function. The average GluCEST values were markedly lower in the hippocampus and cerebral cortex. Positive correlations were observed between GluCEST values and regional homogeneity (ReHo) values in both the hippocampus and the cerebral cortex. HPLC showed apositive correlation with GluCEST values in the hippocampus. GluCEST values were positively correlated with spatial memory. GluCEST MRI provides avisual assessment of glutamate changes in RBI rats for monitoring OAR cognitive toxicity reactions and may be used as abiomarker of OAR avoidance as well as metabolism to facilitate monitoring and intervention in radiation damage that occurs after radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.