Abstract

Central adenosine A1 receptor (A1R) is implicated in pain, sleep, substance use disorders, and neurodegenerative diseases, and is an important target for pharmaceutical development. Radiotracers for A1R positron emission tomography (PET) would enable measurement of the dynamic interaction of endogenous adenosine and A1R during the sleep-awake cycle. Although several human A1R PET tracers have been developed, most are xanthine-based antagonists that failed to demonstrate competitive binding against endogenous adenosine. Herein, we explored non-nucleoside (3,5-dicyanopyridine and 5-cyanopyrimidine) templates for developing an agonist A1R PET radiotracer. We synthesized novel analogues, including 2-amino-4-(3-methoxyphenyl)-6-(2-(6-methylpyridin-2-yl)ethyl)pyridine-3,5-dicarbonitrile (MMPD, 22b), a partial A1R agonist of sub-nanomolar affinity. [11C]22b showed suitable blood-brain barrier (BBB) permeability and test-retest reproducibility. Regional brain uptake of [11C]22b was consistent with known brain A1R distribution and was blocked significantly by A1R but not A2AR ligands. [11C]22b is the first BBB-permeable A1R partial agonist PET radiotracer with the promise of detecting endogenous adenosine fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call