Abstract

To discuss whether the standard test method for preclinical evaluation of posterior spine stabilization devices with an anterior support correctly describes the effect of two short-segment posterior stabilization techniques frequently used in clinical practice for the treatment of traumatic, degenerative and iatrogenic instabilities. A finite element study compared a validated instrumented L2-L4 segment undergoing standing, upper body flexion and extension to ISO 12189 standards model under a compressive load. A bridge instrumentation, with screws only at cranial and caudal levels, and a full stabilization, using screws at every level, are considered for both conditions. The internal loads on the spinal rod and the stress values on the implant are analysed in detail. Using ISO model and a bridge stabilization construct allow to overstress the pedicle screw more than a full stabilization with respect to the corresponding L2-L4 segment undergoing upper body flexion, while the stress on the spinal rod is comparable. Choosing softer/stiffer springs would involve higher/lower loads on every component. ISO model predicts the effects of using both a full and a bridge posterior instrumentation. The study justifies the use of both conditions during in vitro reliability tests to achieve meaningful results easy to compare to clinically relevant loading modes and known in vivo failure modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.