Abstract

In vivo efficacy and safety of HPMA-based copolymers armed with doxorubicin via a spacer containing pH-sensitive linkage that can be prepared within a broad range of attached drug contents (1) was tested in murine tumor models. Mice bearing T cell lymphoma EL4 or B cell lymphoma 38C13 were treated with a single dose of the conjugate (15, 25, and 75 mg Dox eq./kg i.v.) in a therapeutic regime. Anti-tumor resistance of the cured animals was proved by a second challenge with a lethal dose of tumor cells without additional treatment. The content of drug bound to the polymer is an important parameter in relation to the conjugate therapeutic efficacy. The best anti-tumor effects were produced by conjugates with 10 - 13 wt% of bound doxorubicin. Free doxorubicin up to 4.6% relative to total drug content had no impact on the treatment efficacy and acute toxicity. The conjugates induced a complete cure of mice and regular treatment-dependent development of specific anti-tumor resistance. No myelosuppression or organ damage was observed. A well-defined HPMA copolymer-doxorubicin conjugate with pH-sensitive drug release is a good candidate for clinical trials as it has remarkable anti-tumor efficacy and a favorable safety profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.