Abstract

Background and Aims: Colonoscopy is currently the most effective way of detecting colorectal cancer and removing polyps, but it has some drawbacks and can miss up to 22% of polyps. Microwave imaging has the potential to provide a 360° view of the colon and addresses some of the limitations of conventional colonoscopy. This study evaluates the feasibility of a microwave-based colonoscopy in an in vivo porcine model. Methods: A prototype device with microwave antennas attached to a conventional endoscope was tested on four healthy pigs and three gene-targeted pigs with mutations in the adenomatous polyposis coli gene. The first four animals were used to evaluate safety and maneuverability and compatibility with endoscopic tools. The ability to detect polyps was tested in a series of three gene-targeted pigs. Results: the microwave-based device did not affect endoscopic vision or cause any adverse events such as deep mural injuries. The microwave system was stable during the procedures, and the detection algorithm showed a maximum detection signal for adenomas compared with healthy mucosa. Conclusions: Microwave-based colonoscopy is feasible and safe in a preclinical model, and it has the potential to improve polyp detection. Further investigations are required to assess the device’s efficacy in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call