Abstract

PurposePreclinical evaluation of the therapeutic potential of antimicrobial 265 nm UVC for infectious keratitis. MethodsFour experiments explored UVC: 1) impact on bacterial and fungal lawns on agar, in individual or mixed culture, 2) bacterial inactivation dose in an in vitro deep corneal infection model, 3) dose validation in an ex vivo porcine keratitis model and 4) efficacy in a masked, randomised, controlled murine keratitis trial using bioluminescent Pseudomonas aeruginosa. ResultsMinimum effective UVC exposures ranged between 2 s and 5 s for lawn bacteria and fungi in individual or mixed culture. Significant P. aeruginosa growth inhibition in the in vitro infection model was achieved with 15 s UVC, that resulted in a >3.5 log10 reduction of bacteria in a subsequent ex vivo keratitis model (p < 0.05). Bioluminescence fell below baseline levels in all treated animals, within 8 h of treatment (p < 0.05), in the in vivo study. Re-epithelialisation with corneal clarity occurred within 24 h in 75% of UVC-treated cases, with no relapse at 48 h. On plating, bacteria were recovered only from untreated controls. ConclusionsUVC inhibited all tested bacteria and fungi, including mixed culture and strains linked to antibiotic resistance, in vitro, with exposures of ≤ 5 s. In vitro and ex vivo testing confirmed therapeutic potential of 15 s UVC. In vivo, 15 s UVC administered in two doses, 4 h apart, proved effective in treating murine bacterial keratitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.