Abstract

4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid (GSAO) when conjugated with a bifunctional chelator 2,2'-(7-(1-carboxy-4-((2,5-dioxopyrrolidin-1-yl)oxy)-4- oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODAGA) (hereafter referred to as Cell Death Indicator [CDI]), enters dead and dying cells and binds to 90kDa heat shock proteins (hsp90). This study assesses stability, biodistribution, imaging, and radiation dosimetry of [68Ga]- Ga-CDI for positron emission tomography (PET). Preparation of [68Ga]Ga-CDI was performed as previously described. Product stability and stability in plasma were assessed using high-performance liquid chromatography. Biodistribution and imaging were conducted in ten healthy male Lewis rats at 1 and 2 h following intravenous [68Ga]Ga-CDI injection. Human radiation dosimetry was estimated by extrapolation for a standard reference man and calculated with OLINDA/EXM 1.1. Radiochemical purity of [68Ga]Ga-CDI averaged 93.8% in the product and 86.7% in plasma at 4 h post-synthesis. The highest concentration of [68Ga]Ga-CDI is observed in the kidneys; [68Ga]Ga-CDI is excreted in the urine, and mean retained activity was 32.4% and 21.4% at 1 and 2 h post-injection. Lower concentrations of [68Ga]Ga-CDI were present in the small bowel and liver. PET CT was concordant and additionally demonstrated focal growth plate uptake. The effective dose for [68Ga]Ga-CDI is 2.16E-02 mSv/MBq, and the urinary bladder wall received the highest dose (1.65E-02 mSv/Mbq). [68Ga] Ga-CDI is stable and has favourable biodistribution, imaging, and radiation dosimetry for imaging of dead and dying cells. Human studies are underway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call