Abstract
This study assessed AI-processed low-dose cone-beam computed tomography (CBCT) images for single-tooth diagnosis. Human-equivalent phantoms were used to evaluate CBCT image quality with a focus on the right mandibular first molar. Two CBCT machines were used for evaluation. The first CBCT machine was used for the experimental group, in which images were acquired using four protocols and enhanced with AI processing to improve quality. The other machine was used for the control group, where images were taken in one protocol without AI processing. The dose-area product (DAP) was measured for each protocol. Subjective clinical image quality was assessed twice by five dentists, with a 2-month interval in between, using 11 parameters and a six-point rating scale. Agreement and statistical significance were assessed with Fleiss' kappa coefficient and intra-class correlation coefficient. The AI-processed protocols exhibited lower DAP/field of view values than non-processed protocols, while demonstrating subjective clinical evaluation results comparable to those of non-processed protocols. The Fleiss' kappa coefficient value revealed statistical significance and substantial agreement. The intra-class correlation coefficient showed statistical significance and almost perfect agreement. These findings highlight the importance of minimizing radiation exposure while maintaining diagnostic quality as the usage of CBCT increases in single-tooth diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.