Abstract

119 Background: EPI-7386 is the newest of the “anitens”, a new class of compounds designed to inhibit androgen receptor activity by binding to the N-terminal domain (NTD) of the AR. Through this novel method of AR inhibition, anitens can block AR transcription even in the presence of AR ligand-binding domain (LBD) resistance mechanisms including point mutations and splice variants. Compared to the first generation aniten, EPI-506, which showed poor pharmacokinetic properties in patients, EPI-7386 is metabolically stable in vitro and in vivo. A Phase 1 clinical trial of EPI-7386 in metastatic castration-resistant prostate cancer patients failing standard of care therapies is ongoing and the pharmacokinetic properties of the drug in preclinical models as well as in the initial cohort of patients are presented. Methods: The metabolic stability of EPI-7386 was evaluated in vitro in mouse, rat, dog, monkey, and human hepatocytes. Projected PK parameters in humans were estimated from in vitro and in vivo clearance correlation (IVIVC). Induction of CYP isoforms was evaluated in human hepatocyte cultures. In patients, plasma concentrations of EPI-7386 were determined by LC-MS-MS, and 4-beta-hydroxycholesterol levels in plasma were followed over time as an indirect indicator of CYP3A induction. Results: In vitro hepatocyte studies demonstrated good metabolic stability for EPI-7386 with an in vitro half-life > 360 min. In animal PK studies, the terminal half-life of EPI-7386 was approximately 5.8 hours in mouse, 4.9 hours in rat, 13.4 hours in dog and the plasma clearance was low across species. The oral bioavailability of EPI-7386 ranged from 33–112% in mouse to > 100% in rat and dog. Using IVIVC, a predicted human clearance of 0.16–0.39 mL/min/kg was calculated for EPI-7386, which was in line with allometric scaling from animal PK parameters. Human PK profiles of different doses of EPI-7386 were simulated using predicted oral bioavailability, clearance, and volume of distribution. Cmax and AUC0–24h for the Phase 1 first-in-human study (NCT04421222) starting dose of 200 mg dose were predicted to be 6,915 ng/mL and 137,278 ng•h/mL respectively. A comparison between estimated PK parameters and actual values observed in the first patient cohort will be presented. Human hepatocyte CYP induction studies showed that EPI-7386 is not an inducer of CYP1A2 but may have the potential to induce CYP2B6 and CYP3A4. A comparison of 4-beta-hydroxy cholesterol levels measured during the phase 1 will be presented along with a comparison drawn from in vitro models. Conclusions: Pre-clinical characterization predicts that EPI-7386 has the appropriate PK and metabolic properties to afford exposure in patients at potentially efficacious levels following once-daily oral administration. PK measurements in the initial cohort of patients treated in the Phase 1 study will be presented. Clinical trial information: NCT04421222.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call