Abstract

RX J0806.3+1527 is a candidate double degenerate binary with possibly the shortest known orbital period. The source shows an 100% X-ray intensity modulation at the putative orbital frequency of 3.11 mHz (321.5 s). If the system is a detached, ultracompact binary gravitational radiation should drive spin-up with a magnitude of ~10-16 Hz/s. Here we describe the results of the first phase coherent X-ray monitoring campaign on RX J0806.3+1527 with Chandra. We obtained a total of 70 ksec of exposure in 6 epochs logarithmically spaced over 320 days. These data conclusively show that the X-ray frequency is increasing at a rate of 3.77 +- 0.8 x 10-16 Hz/s. Using our new ephemeris we are able to phase up all the earlier Chandra and ROSAT data and show they are consistent with a rate of 3.63 +- 0.06 x 10-16 Hz/s over the past decade. This value appears consistent with that recently derived by Israel et al. largely from monitoring of the optical modulation, and is in rough agreement with the solutions reported initially by Hakala et al., based on ground-based optical observations. The large spin-up is consistent with gravitational radiation losses driving the evolution. An intermediate polar (IP) scenario where the observed X-ray period is the spin period of an accreting white dwarf appears less tenable. If the ultracompact scenario is correct, then the X-ray flux cannot be powered by stable accretion which would drive the components apart, suggesting a new type of energy source (perhaps electromagnetic) may power the X-ray flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.