Abstract

We demonstrate a technique for precision sensing of the temperature or the magnetic field by simultaneously driving two hyperfine transitions involving distinct electronic states of the nitrogen-vacancy center in diamond. Frequency modulation of both driving fields is used with either the same or opposite phase, resulting in the immunity to fluctuations in either the magnetic field or the temperature, respectively. In this way, a sensitivity of 1.4 nT Hz−1∕2 or 430 μK Hz−1∕2 is demonstrated. The presented technique only requires a single frequency demodulator and enables the use of phase-sensitive camera imaging sensors. A simple extension of the method utilizing two demodulators allows for simultaneous, independent, and high-bandwidth monitoring of both the magnetic field and the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.