Abstract

The characteristics of laser beam propagation within a diamond tool critically influence the applied thermal softening capability of in situ laser-assisted diamond turning (In-LAT). In the present work, we perform optical geometric analysis, optical simulation and experimental validation to propose a novel diamond tool configuration for precisely tailoring laser beam propagation in In-LAT. First, the characteristics of laser beam propagation in the current In-LAT diamond tool are theoretically and experimentally explored. Second, according to the issues discovered in the current In-LAT diamond tool, an improved tool configuration based on the total internal reflection of a laser beam within the diamond tool is proposed, aiming for promoting refraction of the laser beam from the rake face of the diamond tool as well as eliminating the reflection of laser beam to tool holder. Finally, the optimization of laser beam incident position is carried out for achieving the superior profile and intensity of the emitted laser spot. Current work provides rational laser beam propagation for improving the thermal-softening capability of an In-LAT diamond tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call