Abstract

Precision spectroscopy of the 2S − 4P1/2 and 2S − 4P3/2 transitions in atomic hydrogen is performed with a reproducibility of a few parts in 1012. A cryogenic beam of metastable 2S atoms is obtained by optical excitation, avoiding excessive heating of electron impact excitation used in all previous experiments of this kind. Despite the low temperature of 5.8 K, the first‐order Doppler effect is the dominating systematic shift, which is suppressed to a very high degree. The effectiveness of this suppression is verified by employing a time‐resolved detection scheme. This experiment should contribute to an improved determination of the Rydberg constant and the proton r.m.s. charge radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.