Abstract

Within the PROBA-2 microsatellite mission, a miniaturized single-frequency GPS receiver based on commercial-off-the-shelf (COTS) technology is employed for onboard navigation and timing. A rapid electronic fuse protects against destructive single-event latch-ups (SEL) and enables a quasi-continuous receiver operation despite the inherent sensitivity to space radiation. While limited to single-frequency C/A-code tracking with a narrow-band frontend, the receiver is able to provide precision navigation services through processing of raw GPS measurements on ground as well as a built-in real-time navigation system. In both cases, ionospheric path delays are eliminated through a combination of L1 pseudorange and carrier phase measurements, which also offers a factor-of-two noise reduction relative to code-only processing. By comparison with satellite laser ranging (SLR) measurements, a 0.3-m (3D rms) accuracy is demonstrated for the PROBA-2 reduced dynamic orbit determinations using post-processed GPS orbit and clock products. Furthermore, the experimental onboard navigation system is shown to provide real-time position information with a 3D rms accuracy of about 1 m, which notably outperforms the specification of the Standard Positioning Service (SPS). In view of their lower hardware complexity, mass budget and power requirements as well as the reduced interference susceptibility, legacy C/A-code receivers can thus provide an attractive alternative to dual-frequency receivers even for demanding navigation applications in low Earth orbit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call