Abstract

Antimicrobial resistance continues to outpace the development of new chemotherapeutics. Novel pathogens continue to evolve and emerge. Public health innovation has the potential to open a new front in the war of “our wits against their genes” (Joshua Lederberg). Dense sampling coupled to next generation sequencing can increase the spatial and temporal resolution of microbial characterization while sensor technologies precisely map physical parameters relevant to microbial survival and spread. Microbial, physical, and epidemiological big data could be combined to improve prospective risk identification. However, applied in the wrong way, these approaches may not realize their maximum potential benefits and could even do harm. Minimizing microbial-human interactions would be a mistake. There is evidence that microbes previously thought of at best “benign” may actually enhance human health. Benign and health-promoting microbiomes may, or may not, spread via mechanisms similar to pathogens. Infectious vaccines are approaching readiness to make enhanced contributions to herd immunity. The rigorously defined nature of infectious vaccines contrasts with indigenous “benign or health-promoting microbiomes” but they may converge. A “microbial Neolithic revolution” is a possible future in which human microbial-associations are understood and managed analogously to the macro-agriculture of plants and animals. Tradeoffs need to be framed in order to understand health-promoting potentials of benign, and/or health-promoting microbiomes and infectious vaccines while also discouraging pathogens. Super-spreaders are currently defined as individuals who play an outsized role in the contagion of infectious disease. A key unanswered question is whether the super-spreader concept may apply similarly to health-promoting microbes. The complex interactions of individual rights, community health, pathogen contagion, the spread of benign, and of health-promoting microbiomes including infectious vaccines require study. Advancing the detailed understanding of heterogeneity in microbial spread is very likely to yield important insights relevant to public health.

Highlights

  • Antimicrobial resistance continues to outpace the development of new chemotherapeutics

  • 4) Future-oriented scenarios that anticipate Precision Public health promoting the spread of health-promoting microbiomes including, but not limited to, infectious vaccines

  • The human exposome is currently defined elsewhere as the sum of an individual’s lifetime exposure to microbes and chemicals [19]. We suggest that this definition of the human exposome misses vital elements of what matters and the definition could usefully be extended in two related ways: 1) It should explicitly include microbes and chemicals sourced directly from other humans which probably are a major contributor in many circumstances and 2) The exposome should be understood as a reciprocal and interactive process to account for the fact that each individual is both a source and a sink of microbes and chemicals

Read more

Summary

Conclusions

A data-driven dilemma in the future of public health ethics Public health, with reference to microbiology, utilizes several streams of data all of which are subject to improvements whose combined information have the potential to be synergistic: 1) identification and quantification of microbes, their locals of growth, metabolism, evolution, carriers, and 2) mapping the physical parameters that contribute to microbial survival and dissemination. 3) Patient and epidemiological reporting 4) Correlation indicators such as Google searches. Mary Mallon, better known as “Typhoid Mary” was an asymptomatic carrier of the typhoid fever bacillus whose unfortunate choice of occupation was to be a cook Epidemiologists tracked her down, but she escaped surveillance, changed her name and again took up the only trade she knew. Anticipated technical advances to prospectively screen carriers of transmissible disease universalize this possibility which is both an opportunity or a threat This commentary article discusses enabling technologies and considers implications for both public health and private rights. Future approaches to sampling in Precision Public Health will ideally be unobtrusive but consequences, i.e. how the information is used, are part and parcel of generalized changes to the practical as well as philosophical aspects of privacy, individual rights, and free will [111] that merit as much forethought with all the relevant stakeholders as the technology

53. Dawkins R: The selfish gene
93. WHO: WHO strategic response plan 2015
Findings
95. Trust W

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.