Abstract

The distribution of matter in the universe is, to first order, lognormal. Improving this approximation requires characterization of the third moment (skewness) of the log density field. Thus, using Millennium Simulation phenomenology and building on previous work, we present analytic fits for the mean, variance, and skewness of the log density field $A$. We further show that a Generalized Extreme Value (GEV) distribution accurately models $A$; we submit that this GEV behavior is the result of strong intrapixel correlations, without which the smoothed distribution would tend (by the Central Limit Theorem) toward a Gaussian. Our GEV model yields cumulative distribution functions accurate to within 1.7 per cent for near-concordance cosmologies, over a range of redshifts and smoothing scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call