Abstract

Due to cylinder friction, valve dead zone effect, flow nonlinearity, and measurement noise exist in pneumatic system. In the actual machining, it is difficult to achieve precise control of the pneumatic servo polishing system using the traditional PID algorithm, so the machining accuracy of the blades cannot be guaranteed. A sliding mode control (SMC) method based on high gain observer (HGO) is proposed. The HGO observes the output signal of the system and feeds the estimated signal back to the SMC to ensure that the observation error is uniform ultimate boundedness. Simulation and experiments show that compared with the PID algorithm, the steady-state error of HGO-SMC can be reduced by 66.4%. Compared with SMC(sgn), the high-frequency chattering of HGO-SMC can be reduced by 72.5%. Moreover, the polishing processing experiment shows that HGO-SMC can improve the form and position accuracy by 52.6% and reduce the surface roughness by 55.6%, compared with the original PID control algorithm of the polishing machine tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.