Abstract

Plants exhibit an array of drought responses and adaptations, where the trade-off between water loss and CO2 uptake for growth is mediated by regulation of stomatal aperture in response to soil water content (SWC), among other factors. For crop yield stability, the question is how drought timing and response patterns relate to post-drought growth resilience and vigor. We earlier identified, in a few reference varieties of barley that differed by the SWC at which transpiration was curtailed, two divergent water use strategies: water-saving ("isohydric") and water-spending ("anisohydric"). We proposed that an isohydric strategy may reduce risk from spring droughts in climates where the probability of precipitation increases during the growing season, whereas the anisohydric is consistent with environments having terminal droughts, or with those where dry periods are short and not seasonally progressive. Here, we have examined drought response physiology in an 81-line barley (Hordeum vulgare L.) diversity set that spans 20th century European breeding and identified several lines with a third, dynamic strategy. We found a strong positive correlation between vigor and transpiration, the dynamic group being highest for both. However, these lines curtailed daily transpiration at a higher SWC than the isohydric group. While the dynamic lines, particularly cv Hydrogen and Baronesse, were not the most resilient in terms of restoring initial growth rates, their strong initial vigor and high return to initial transpiration rates meant that their growth nevertheless surpassed more resilient lines during recovery from drought. The results will be of use for defining barley physiological ideotypes suited to future climate scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.