Abstract

Over the past decade, precise point positioning (PPP) has become a tool widely used in many Global Navigation Satellite Syste applications and the performance levels of the method are often close to those that can be achieved through a differenced approach. The aim of this paper is to analyze the dependency of the precision of a PPP solution output from the GIPSY-OASIS II software on the observing-session durations. In detail, starting from real data acquisitions spanning 24, 12, 6, 3 h, 1 h, and ½ an hour, all processed through the PPP, a continuous function has been defined and the related coefficients have been estimated. The original dataset consists of daily RINEX files provided from 44 sites of both International GNSS Service (IGS) and European Permanent Network (EPN) permanent networks acquired over one year. Each RINEX file was split into several shorter files according to the above listed time spans and processed by using GIPSY-OASIS II together with jet propulsion laboratory (JPL) precise post-processed products. The uncertainty of the proposed function was also estimated and a complete analysis of its compliance with the data sample has been provided. The estimated model is demonstrated to reach a millimeter accuracy level within a statistical confidence level of 99% using the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.