Abstract

Accurate reading of words and text relies on reliable identification of letters in left-to-right order. Previous studies have shown that people often make letter-reversal errors when identifying strings of letters away from fixation. These errors contribute to a decline in letter identification performance away from fixation. This study tests the hypothesis that these errors are due to decreased precision (increased position noise) in the coding of letter position in the periphery. To test our hypothesis, we measured observers’ performance for identifying pairs of adjacent letters presented within eight letter positions left and right of fixation. The task was to name the two letters of each pair, from left to right. Responses were scored in two ways for each letter position: (1) letters were identified correctly and in the correct position, and (2) letters were identified correctly but in the wrong position. The ratio of these two scores, when subtracted from 1, gives the empirical rate of mislocation errors. Our primary finding shows that the coding of letter position becomes increasingly imprecise with distance from fixation. A model in which the encoded position of each letter is independent and Gaussian distributed, and in which the spread of the distribution governs the precision of localizing the letter accounts for the empirical rate of mislocation errors. We also found that precision of letter position coding scales with letter size but the precision does not improve with the use of a pre-cue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call