Abstract

Layered Transition Metal Dichalcogenides (TMDs) are an important class of materials that exhibit a wide variety of optoelectronic properties. The ability to spatially tailor their expansive property-space (e.g., conduction behavior, optical emission, surface interactions) is of special interest for applications including, but not limited to, sensing, bioelectronics, and spintronics/valleytronics. Current methods of property modulation focus on the modification of the basal surfaces and edge sites of the TMDs by the introduction of defects, functionalization with organic or inorganic moieties, alloying, heterostructure formation, and phase engineering. A majority of these methods lack the resolution for the development of next-generation nanoscale devices or are limited in the types of functionalities useful for efficient TMD property modification. In this study, we utilize electron-beam patterning on monolayer TMDs (MoSe2, WSe2 and MoS2) in the presence of a pressure-controlled atmosphere of water vapor within an environmental scanning electron microscope (ESEM). A series of parametric studies show local optical and electronic property modification depending on acceleration voltage, beam current, pressure, and electron dose. The ultimate pattern resolution achieved is 67 ± 9 nm. Raman and photoluminescence spectroscopies coupled with Kelvin Probe Force Microscopy reveal electron dose-dependent p-doping in the patterned regions, which we attribute to functionalization from the products of water vapor radiolysis (oxygen and hydroxyl groups). The modulation of the work function through patterning matches well with Density Functional Theory modeling. Finally, post-functionalization of the patterned areas with an organic fluorophore demonstrates a robust method to achieve nanoscale functionalization with high fidelity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call