Abstract

In the light of poor management outcomes of antibiotic-resistant respiratory tract infection (RTI)-associated sepsis syndrome and multidrug-resistant tuberculosis (MDR-TB), new management interventions based on host-directed therapies (HDTs) are warranted to improve morbidity, mortality and long-term functional outcomes. We review developments in potential HDTs based on precision cancer therapy concepts applicable to RTIs including MDR-TB. Immune reactivity, tissue destruction and repair processes identified during studies of cancer immunotherapy share common pathogenetic mechanisms with RTI-associated sepsis syndrome and MDR-TB. T-cell receptors (TCRs) and chimeric antigen receptors targeting pathogen-specific or host-derived mutated molecules (major histocompatibility class-dependent/ major histocompatibility class-independent) can be engineered for recognition by TCR γδ and natural killer (NK) cells. T-cell subsets and, more recently, NK cells are shown to be host-protective. These cells can also be activated by immune checkpoint inhibitor (ICI) or derived from allogeneic sources and serve as potential for improving clinical outcomes in RTIs and MDR-TB. Recent developments of immunotherapy in cancer reveal common pathways in immune reactivity, tissue destruction and repair. RTIs-related sepsis syndrome exhibits mixed immune reactions, making cytokine or ICI therapy guided by robust biomarker analyses, viable treatment options.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.