Abstract

The frequency of the transition between the 3dσ GK 1Σ+ g (v=1, N=1) state of H2 and the Rydberg state belonging to a series converging to the X +2Σ+ g (v +=0, N +=1) ground state of ortho H+ 2 has been measured with an accuracy of 1.2 MHz using a narrow-band pulsed near-infrared (NIR) laser. Systematic errors originating from ac and dc Stark shifts, from pressure shifts and from the frequency shift and chirp accompanying the generation of the NIR laser pulses were quantified. By combining this frequency with the binding energy of the 56p (N = 1, S = 0) Rydberg state, the ionisation energy of the GK 1Σ+ g (v=1, N=1) state of ortho H2 was determined to be 379855188.3(12) MHz [12670.60522(4) cm−1]. This new result represents the first step towards the determination of the ionisation and dissociation energies of molecular hydrogen at a ν/Δν level of accuracy beyond 1010. Using the current value of the ionisation energy of ortho H2 [124357.23797(36) cm−1, from Liu et al. [J. Chem. Phys. 130, 174306 (11)] and the frequency interval between the N = 1 and N = 0 rotational levels of the X (υ = 0) ground state of H2 [118.48684(10) cm−1, from Jennings et al. [J. Mol. Spectrosc. 126, 19 (28)], the term value of the GK 1Σ+ g (υ=1, N=1) state was determined to be 111805.1196(4) cm−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.